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NON-HOLONOMIC CHAPLY~IN SYSTEMS* 

S.V. STANCHENKO 

The tools developed in /l/ to describe holonomic systems on a tangent 
bundle, and some concepts introduced in /2/, are applied to non-holonomic 
Chaplygin systems. Through the use of differential forms, the concept 
of quasicoordinates is defined, and the conditions studied in /3/ for the 
existence of a Chaplygin reducing factor for systems with an arbitrary 
number of degrees of freedom are formulated. The integral invariant is 
shown to have properties characteristic for Chaplygin systems and different 
from those established in /4/. The existence of an invariant measure 
with density differentiable with respectto velocities in a potential-free 
system implies the existence of a measure with density dependent only on 
the coordinates. The invariance of a certain measure with density depen- 
dent on the coordinates (but not on the velocities) in a potential-free 
system implies invariance of the same measure after a potential has been 
added. As an example it is proved that the equations of motion for a 
non-holonomic Chaplygin sphere /5/ with arbitrary potential admit of an 
invariant measure. 

1. Statement of the problem. Quasicoordinates. Let TV" be the tangentbundle 
of a configuration manifold IpL with local coordinates (9, 9'). We define an operator d, acting 
on functions by 

Generalized forces will be represented by a l-form 

Q = i$l Qi (¶,q’) QI 

If T is the kinetic energy, detI]Z',,,,Il# 0, then the equation 

da’,T (X, .) = --dT + Q 0.3 

defines a vector field X corresponding to the mechanical system /l/. Bere dd,T is a closed 
non-singular differential 2-form, and dT, Q are differential l-forms. 

The form dd,T has a non-singular skew-symmetric matrix, and therefore the components 
of the field X are determined as solutions of a system of linear equations; it has been shown 
/2/ that the field X is "special", i.e., 

We consider a vector field defined in a more general way than (1.2), by the equation 

0(X, .) = R (I.4 

where B is a (not necessarily closed) Z-form. Let X be a special field, i.e., satisfying 
(1.3). 

Considering functions defined in a neighbourhood of the set A ={qi’ = 0, i = I,..., n},we 
can define the notion of homogeneity with respect to velocities. This notion can be extended 
to vector fields and differential forms. 

Definition 1. The forms &i and fields alag, are homogeneous with respecttovelocities 
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with degrees of homogeneity one and minus one, respectively. The degree of 
product of these objects by homogeneous functions is the sum of the degrees 

the factors. 

Example. The differential form 

Zaij (9) dq<' A dqj + Zhij" (q) qk'dqi A dqj 

and vector field 

are homogeneous of degree one in the velocities. 

Note that the form 52 in Eq.(1.4) is defined up to terms A such that 

A(x,.)=O 

The coefficients of a 2-form satisfying this condition may be analytic 

homogeneity of a 

of homogeneity of 

(1.5) 

in the velocities, 
and the form itself has a series expansion in the neighbourhood of the set A, whose terms are 

homogeneous with respect to the velocities. For example, 

However, a form A 

Definition 2. 

as a form on TV”. 
defined throughout 

satisfying condition (1.5) may also be constructed by other 

Let (3 = ZB&, be a non-singular differential l-form on 

A quasicoordinate corresponding to 8 is a function s, not 

the phase space TV", which satisfies the equation 

Lxn = 8 (X) 

means. 

vn, considered 

necessarily 

(1.6) 
throughout its domain of definition. 

Remarks. lo. The right-hand side of the partial differential Eq.(1.6) is linear with 

respect to the velocities: 0 (X) = Z& (9) Q'. 
20. The function x is not uniquely defined by Eq.(l.6). 

30. If the form O is exact, i.e., O=dq,, then the function 'p is a solution of Eq.(1.6). 
The domain of definition of quasicoordinates for non-closed forms has not yet been in- 

vestigated. We know, nevertheless, that although the function n itself need not be defined 
throughoutthephase space, its derivative along X can be continued to a smooth (analytic) 

function e(X) on TV”. This function is usually denoted by nc'. 

The introduction of n as a new coordinate generally requires explicit expression of ?I 

in terms of the old coordinates and vice versa. 

The following example will illustrate a situation in which this complication does not 

arise. Let ql be a cyclic coordinate, i.e., it does not occur explicitly in the coefficients 

of the forms R and R in Eq.(1.4). In addition, 

9 = ZOidqi, 61 + 0, R (a/aql) = 0 

Expand Q and R in terms of the forms 8, dq,, . . ., dqn and collect all coefficients of 8 in 

52 in a form 'y, so that Q= R,+y/\e. Under our assumptions we obtain u(X) = 0. This follows 

from a comparison of the coefficients of tl in Eq. (1.4). 

Now put A =vA (dn- 8). Obviously, if x is a quasicoordinate corresponding to 8, then 
A (X, .)= 0. 

Putting 9, = Q+ A, we can write instead of Eq.(1.4) Q,(X,.) =(Q,+yA drr)(X,.) = R, where 

the coordinate q, and differential dq, do not appear in 61, and R, and we can treat YI as a 
new coordinate. In Sect.2 we shall develop a procedure to introduce "arc length" as a coordi- 
nate describing the motion of a Chaplygin sleigh. 

Remarks. 1. If dR, = 0, dy = 0, this procedure yields the Hamilton equations: dQ, == 0. 

2. Since x is a cyclic coordinate in the new equations, its dependence on time does not 

affect the entire solution. The time-dependence of X' is, however, essential. 

2. Chaplygin's equations. If a non-holonomic system involves cyclic coordinates, as 

many as there are constraints, one can write the equations of the reduced system in a form 

similar to (1.4). Consider a conservative mechanical system with Iiamiltonian H* = T* - U* 

and phase space TM” , subject to k non-integrable, linear constraints which are homogeneous 

functions of the velocities: 

(2.1) 

Suppose that neither the Hamiltonian H* nor the functions ai explicitly contain the 

coordinate qs. Put n=m-kk. 
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Theorem 1. The vector field of the reduced Chaplygin system may be defined on a certain 

space TV” by the equation 

Q (X, .) = -dH (2.2) 

where X is a special field. Here H is the restriction of the Hamiltonian H* to the surface 

z = {F = O}, and 52 is a certain (not necessarily closed) 2-form. 

We prove the theorem for the case in which the equations of the constraints can be written 

as 

f,=q9,‘- -j . adi (2.3) 
id<+1 

Proof. The equations with Lagrange multipliers can be written 

dd,T* (X, .) = - dH* + 5 h,d,f, 
s=1 (2.4) 

and h, are found from the condition 

Lxfs = df, (X) = 0 (2.5) 

It has been shown (2 ) thatthe field defined by Eqs.(2.4) is special on TM”‘. Consequently, 

dnf, (X) Iz = f, Ix = 0 (2.6) 

In order to eliminate dependent velocities, we project the field X onto a suitable co- 

ordinate subspace of dimension 2m -k. We then choose a function T that is identical with T* 
on E and is independent of qa’. Since T* and T are identical on X,there exist functions h, 

such that 

T* = T + ; h,f, 
*=1 

and hence, substituting this expression into (2.4) and using (2.5), (2.6), we deduce that at 

points of X. 

(dd,T f Sil h,dd,f,) (X, .) = - dH + 4 (A, - Lh,) dvf, 

Since the coordinates qS are cyclic, it follows that in this equation d,f, is the only 

form involving hs. Therefore h, -Lx& = 0. Substituting the derivatives qS’ from (2.3) into 

h,t we see that the resulting equation does not involve the variables qa, qi or their dif- 

ferentials. 

The field X is defined up to terms proportional to aian. and aiaq,'. We shall say that 
the field is reduced if the coefficients of a/aq, and N3q,' vanish. 

We finally obtain an equation for a special field on TV" = {&+I, . . . 1 qmt a-+;, . . .t qm’)}: 

Q(X, .) = (dd,T + il h,dd,f,) (X, .) = - dH (2.7) 

Note that the reduced equation is the restriction of the equation with multipliers to the 

O-space of the forms d,,f, df. 

Corollary. If the system is natural,the form 8 is homogeneous with respect to the 
velocities. 

Proof. Since T is quadratic, h, is linear, so differentiation d does not affect the 

degree of homogeneity and d, changes it by one. 

Example. Consider the motion of a Chaplygin sleigh on a horizontal plane. Let I,# be 
the coordinates of the runner on the plane, q the angle of rotation of the runner, a, b the 

coordinates of the centre of mass in a coordinate frame attached to the runner, and k is the 
radius of intertia. Then 

2T = (I' - cp' (a sin cp + b cos q))z + (g' + (a eoa p - b sin cp)P -I- Pm"' 

The equation of the constraint is 

fs t'sin cp - y' cos cp = 0 

Changing to quasivelocities, we have 
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Then 2T = fs + $0 - 2aQ'+ r2rp’n, r2 = aB $ ka. The equation with multipliers is 

8 (X, .) = (acp' - f) df - X'dX' -I- faf - $9') dcp' + id,f 

Using the equalities ddt,l=d~A\&', d&v'=--dtpIj &f, we can write 

52 = (df- x'drp -,a+') A d,f + (dx' + (f - a~') d@ A d&-t 
(I%~' - adf) A dq, 

Put y = dx' + (f- acp') drp. Comparing the coefficients on d,x', we see that y (X) = 0. 
Let x be a function satisfying the equation L,X = x' in its domain of definition. 

Then A(X, +)= 0, if A = y A (dx- d-x'). 
Consider the equation 

(Bi A) (X, a)= --dT-t- ?d,f 

which yields the following reduced equation when one sets I= 0 and restricts all forms to 
the O-space of df and d,J(Xis a special field) : 

@(X,-j = -dT 

2T = x.'= -t r%p'z, 
a a a a 

x=al~+.2a~+x'~+rp'~ 

The transformation to quasicoordinates and the conjugate quasivelocities does not induce 
any diffeomorphism of the configuration space V. Consequently, if a transformation of this 
type results in a phase space with the structure of a tangent bundle, this structure differs 
from the previous structure. The old coordinates and velocities have been mixed. 

Below we shall consider equations of the type (2.2) with a form 9, homogeneous of degree 
one, satisfying the non-singularity condition 

Q" = gw, g# 0 (o = dq,/', . . // dq, /', dq; /j . . /j dq,,‘) 

where o is the form of the volume. 
It can be shown that Q can be expressed as 

Q = dcl f 6, (3 = Zei,k (~~~~‘~qj /I %I 

where a is some l-form. 

(2.8) 

3. The Chaplygin reducing factor. A change of time variable corresponds to re- 
parametrization of the integral curve OK, what is the same, multiplication of the velocity 
vector by a certain function. The integral curves themselves remain unchanged. 

Definition 3. A vector field X defined as in (2.2) has a Chaplygin reducing factor if 
there exists a function N>O such that the field X/N is Hamiltonian with the same 
Hamiltonian, i.e., for some closed differential Z-form Q,, 

Q2, (X/N, .) = --dH, dR, = 0 (3.1) 

Conditions for the existence of a reducing factor where discussed in detail in /3/. The 
basic conditions are as follows. 

Proposition 1. A reducing factor for a fie1d.X defined by (2.2) exists if and only if 
there exist a function N>O and a 2-form A such that 

&, = 0, Q1 = NQ + A, A@, *f = 0 

This is simply a rephrasing of the definition. The following condition is less general 
but more constructive. 

Proposition 2. If there exists a function &' on TV" such that 

@A a=a (3.2) 

then the field X defined by (2.2) and (2.8) has the reducing factor N =expP. 

Proof. Put N=exp P. Then by (3.2) we have dNAa= No. Hence 

d(NS2)=d(N&+No)=d(NdafdN~a)=O 

and to satisfy condition (3.1) we need only put 52, = NQ. 

Corollary. If P is twice differentiable in the neighbourhood of A, then there exists a 
reducing factor N, = N,(q). 

Proof. By Hadamard's Lemma, 
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where P is differentiable with respect to the velocities. Eq.(3.2) may be written 

(dP, /j a - U) + d(Xqi'Pi) /j a = 0 (3.3) 

Since the forms a and u are homogeneous of degree one, it follows that (3.3) is a set of 
equations of the form 

xqi’ai (9) + Z!7i’QI’bij (97 9’) = O (3.4) 

where ai and bi, are certain functions, and the first term of (3.4) corresponds to the first 

term of (3.3). 
Differentiating (3.4) with respect to q' and putting q' = 0, we see that ai = 0. Con- 

sequently, the first term of (3.3) also vanishes, i.e., 

dP, /\ c( = o, N, = exp P, 

The following fact is also worthy of note. 

Theorem 2. If the field X defined by Eq.(Z.Z) has a reducing factor and the form NQ 
is closed, then there exists an integral invariant with density pLggN"-l, where g is defined 

by the equality 52" = gw, and w is the formof the volume. 

Proof. BY assumption, sQ(XlN, .) = -dH and d(NO) = 0. Let XIN = Y, then LY(NQ) = 
- ddH = 0 and 

0 =n (Lc,xa)/\(NQp = Ly(!qn=LxN"-Q"= Ls(po) 

The assumption that da and (J are homogeneous yields a number of useful conclusions. 

4. Invariant measure. The equation defining the density of the integral invariant 

PLO may be written differently, e.g., 

Lx(P) = 0 (4.1) 
It is convenient to define w = ln (p/g). Then 

LxW=cp (4.2) 
where cp is some function. 

Lemma 1. Let H = T -U, let da and IJ be homogeneous of degree one and the field x 

defined by (2.2). Then 'p is linear in the velocities and independent of the potential and 

potential forces. 

Proof. Using the equality go = Q" and performing some reduction, we obtain the equation 

wLxW= -&7(X, .) fj CF nlg (4.3) 

On either side of this equation we have 2n-forms, i.e, products of the volume form by a 
coefficient. The coefficient on the right is cp. 

The form o involves the product of n differentials dqi' The factor Q cannotcontribute 
more than one to the product. Each term of the form do(X,.) also involves at mostonevelocity 
differential. If 

U = XUijkqk'dqi A dqj 

these terms are 

izj ui; dq,’ A (q,’ dqj - qj’ dqz) 

i.e., the coefficients of the form do(X,.) in these terms are linear in the velocities. 
The form R is homogeneous of degree one, and therefore the coefficients of dqi in it do 

not involve the velocities. To complete the proof, we note that the expression on the right 

of (4.3) involves only the coefficients of the forms da and &, and not the components of the 
field X, which depend on the potential. 

Theorem 3. If the special field X on TV” defined by (2.2) and (2.8) has an integral 
invariant with density p = p (q) for H = T, i.e., for U = 0, then the same function p(q) 
is also the density of the integral invariant for the field obtained when dU is added on the 

right of (2.2), whatever the potential U = u(q). 

Proof. By the lemma, nothing on the right-hand side of (4.2) is changed by the addition 

of dU. But the left-hand side also remains unchanged, because if W = W(q), then 

L_~ w = z qi’awiaqi 

i.e., the field components, which depend on the potential, do not act on functions of q. 
Thus the density is determined by the same equation as before. 
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The homogeneity property enables us to draw conclusions as to the local organization of 
the invariant measure in potential-free systems. 

Theorem 4. If the special field X on Z’V” defined by (2.2) and (2.8) has an integral 
invariant when U=O, with density P = ~(q,q') twice differentiable with respect to the 
velocities in the neighbourhood of the set A, and the kinetic energy isaquadratic function 
of the velocities, then 

P (939') = PO (q)F (919') 

where ~0 is the density of the integral and F is a first integral. 

Proof I Since T is quadratic and 8 is homogeneous, it follows that X itselfishomogene- 
ous of degree 1. The rest oftheproof is analogous to that of the corollary to Proposition 1 
and is based on the expansion 

Example. Consider the motion of a non-holonomic Chaplygin sphere on a horizontal plane. 
In Ra = Rw2 X Ry3 this motion is described by the equation 

k’+oxk-0, y‘+oXy=ff (4.4) 

k = lo + mazy X (0 X y), f = di% (f,, 19, 1,) 
0 = col(p, 9, r), y = 001 (Y1*YP. vs) 

These equations have an integral <y,y> = Q’(<,> denotes convolution). Define spherical 
coordinates on the surface p=i: 

h= Q%+s> Y% = PWs, Vs = PC,; J = -Q% f4.6) 
x0 = det 18 (R. Y9, P,W (P. 6, cp) /I 
s, = sin 6, cg = COs 6, I = sin cp, cs = coscp 

Embedding this surface in a space with coordinates (q,e,(~,p,q,r) (we have added Jli), we 
let X, denote the fieldcorresponding to equations (4.4): 

(4.6) 

where 'I,,+ a1 are functions of Y (0, 'p). 
By Theorem 1, the equations of motion of the sphere can also be obtained in the form of 

(2.2), with TV=((~,8',~,',$,6,cp)). Transforming to angular velocities, 

p = tc“ w, + e‘cs, * = qYSe&s - wsz, r = I@. cp + rp’ (4.7) 
we let Xc denote the corresponding special field. 

Proposi ti on 3. xc = x* + xq, where X$ = qaial(t. 

Proof. Define column vectors 

and a matrix 

The form D can be written out explicitly: 

Q = da 3_ 0, 0 = -_(ma2Bo, dd,o> 
da = d <(I + ma2B) Q), d@> = ((I + ma%) du, d&t -/- <I@, dd@> 
6=-3!.$,detI(I+ma*EII 

Multiplication, wherever necessary, is understood as outer multiplication of forms; Y17 Ytv Y3 
are the functions of the Euler angles 6.9 defined by (4.5). 

It can be verified directly that 

where 111. %7 a.7 are the same as in (4.6). 
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Put J = JPIFZl = -s*. 

Lezmna 2. The vector field X, has the invariant measure @ol, where 

o1 = d$ A dO fi dm A dp A dq A dr 
k = [(ma')-' - <y, (I + ma2E)-'yi]-"' 

Proof. This was proved for S; in /5/, and Ls,(plwl) =O follows from the fact that $ 

does not occur in any of the functions involved. 
We now observe that although the functions p,= PJ and g may vanish, owing to singular- 

ities in the system of coordinates (Euler angles), the quotient p,/g always remains positive, 
and application of Theorem 3 yields the following simple proposition. 

Proposition 4. For any function L- = c (V), the differential equations 

k'+oxk=~xC',', v'+oxy=O (4.8) 

in R6 = Rm3 x RyS have an invariant measure po2(02 is the form of the volume, 0% = dv, A dy2 A 

dy, A dp A dq A dr). 

It can be verified that (4.8) are the equations for a Chaplygin sphere with arbitrary 
potential. 

The author is indebted to V.M. Zakalyukin and N.K. Moshchuk for their interest and for 
many discussions. 
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